Neuroplasticity in N-methyl-d-aspartic acid receptor signaling in subregions of the rat rostral ventrolateral medulla following sedentary versus physically active conditions.

久坐与运动状态下大鼠延髓腹外侧亚区N-甲基-D-天冬氨酸受体信号传导的神经可塑性

阅读:8
作者:Fyk-Kolodziej Bozena E, Ghoddoussi Farhad, Mueller Patrick J
The rostral ventrolateral medulla (RVLM) is a brain region involved in normal regulation of the cardiovascular system and heightened sympathoexcitatory states of cardiovascular disease (CVD). Among major risk factors for CVD, sedentary lifestyles contribute to higher mortality than other modifiable risk factors. Previous studies suggest excessive glutamatergic excitation of presympathetic neurons in the RVLM occurs in sedentary animals. Therefore, the purpose of this study was to examine neuroplasticity in the glutamatergic system in the RVLM of sedentary and physically active rats. We hypothesized that relative to active rats, sedentary rats would exhibit higher expression of glutamate N-methyl-d-aspartic acid receptor subunits (GluN), phosphoGluN1, and the excitatory scaffold protein postsynaptic density 95 (PSD95), while achieving higher glutamate levels. Male Sprague-Dawley rats (4 weeks old) were divided into sedentary and active (running wheel) conditions for 10-12 weeks. We used retrograde tracing/triple-labeling techniques, western blotting, and magnetic resonance spectroscopy. We report in sedentary versus physically active rats: 1) fewer bulbospinal non-C1 neurons positive for GluN1, 2) significantly higher expression of GluN1 and GluN2B but lower levels of phosphoGluN1 (pSer896) and PSD95, and 3) higher levels of glutamate in the RVLM. Higher GluN expression is consistent with enhanced sympathoexcitation in sedentary animals; however, a more complex neuroplasticity occurs within subregions of the ventrolateral medulla. Our results in rodents may also indicate that alterations in glutamatergic excitation of the RVLM contribute to the increased incidence of CVD in humans who lead sedentary lifestyles. Thus, there is a strong need to further pursue mechanisms of inactivity-related neuroplasticity in the RVLM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。