Precise control of cell-cell communication networks within brain neurovascular units (NVUs) promotes normal tissue physiology, and dysregulation of these networks can lead to pathologies including intracerebral hemorrhage (ICH). The cellular and molecular mechanisms underlying ICH development and subsequent tissue repair processes remain poorly understood. Here we employed quantitative single cell RNA sequencing coupled with spatial in situ gene expression profiling to characterize NVU signaling pathways associated with ICH in neonatal mouse brain tissue. The initial stages of ICH pathogenesis are characterized by downregulation of extracellular matrix (ECM)-associated signaling factors (Adamtsl2, Htra3, and Lama4) that functionally connect to canonical TGFβ activation and signaling in vascular endothelial cells. Conversely, the progressive resolution of ICH involves upregulation of neuroinflammatory signaling networks (Gas6 and Axl) alongside activation of iron metabolism pathway components (Hmox1, Cp, and Slc40a1) in astrocytes and microglial cells. Integrated computational modeling identifies additional ligand-receptor signaling networks between perivascular glial cells and endothelial cells during both ICH pathogenesis and resolution. Collectively, these findings illuminate the molecular signaling networks that promote NVU maturation and provide novel mechanistic insights into the pathways controlling ICH pathogenesis and repair.
Single Cell RNA Sequencing and Spatial Profiling Identify Mechanisms of Neonatal Brain Hemorrhage Development and Resolution.
单细胞 RNA 测序和空间分析揭示新生儿脑出血发生和消退的机制
阅读:16
作者:Forero Santiago A, Chen Zhihua, Pirani Ali, De Arpan, Wise Zachary, Morales John E, McCarty Joseph H
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 31 |
| doi: | 10.1101/2025.07.30.667675 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
