Dual red and near-infrared LED therapy inhibits MRSA biofilm in otitis media.

红光和近红外双光LED疗法可抑制中耳炎中的耐甲氧西林金黄色葡萄球菌生物膜

阅读:7
作者:Ko Yoo-Seung, Gi Eun-Ji, Lee Sungsu, Kim Hong-Chan, Cho Hyong-Ho
Otitis media (OM), particularly when caused by methicillin-resistant Staphylococcus aureus (MRSA), can become refractory due to biofilm formation, which contributes to resistance against conventional antimicrobial treatments. Photobiomodulation using light-emitting diode (LED) therapy has recently emerged as a promising non-antibiotic strategy for managing refractory infections by targeting biofilm-associated pathology. However, especially in the context of MRSA-induced OM, its therapeutic efficacy and underlying mechanisms remain incompletely elucidated. In this study, we established a rat model of OM by inoculating MRSA (5 × 10(8) CFUs) into the middle ear via the tympanic membrane. Red and near-infrared (NIR) LED irradiation (655/842 nm; 163.2 W/m(2); 30 min/day for 5 days) was administered 1 week after infection. Scanning electron microscopy revealed a marked reduction in MRSA biofilm structures, and biofilm biomass was significantly decreased, as assessed by crystal violet staining. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated significant downregulation of fib, icaB, icaC, and icaD, key genes crucial for bacterial adhesion and biofilm development. Histological assessment further showed decreased mucosal thickening and macrophage infiltration, supported by reduced ionized calcium-binding adapter molecule 1 (Iba1) expression. These findings suggest that dual red and NIR LED therapy effectively suppresses MRSA biofilm formation and inflammation in OM, indicating its potential as a novel non-antibiotic therapy for biofilm-associated OM that may help manage persistent or treatment-resistant cases in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。