Phylogenetic variation of layer II cortical immature neurons in dog and horse confirms covariance with brain size and neocortical surface.

狗和马第二层皮质未成熟神经元的系统发育变异证实了与脑容量和新皮质表面积的协变性

阅读:15
作者:Pattaro Alessia, Ghibaudi Marco, Corrente Chiara, Telitsyn Nikita, Graic Jean-Marie, Aresu Luca, Sherwood Chet C, Bonfanti Luca
Recent research in brain structural plasticity has identified "immature" or "dormant" neurons in layer II of the cerebral cortex (cortical immature neurons; cINs), cells that remain in a prolonged state of arrested development but retain the ability to resume maturation and integrate functionally into mature cortical circuits. These immature cells are far more abundant in large-brained mammals, being restricted to paleocortex (piriform cortex) in small-brained rodents and extending in the widely expanded neocortical mantle of species with large gyrencephalic brains. In a previous systematic analysis, using a comparable method for quantification in eight mammalian species, including mice, chimpanzees, and others of diverse phylogenetic backgrounds and neuroanatomical structure, cIN density showed covariation with brain size. Notably, however, members of the order Carnivora (cats and foxes) displayed the highest cIN densities with respect to sheep and chimpanzees, endowed with larger brains. Here we used the same method to characterize and quantify the cINs in the cerebral cortex of dogs (carnivores) and horses (herbivores with a very large brain) to investigate the position of these two species in the phylogenetic variation. Our results further strengthen the finding of covariance between cIN density and increasing brain size and confirm a relationship with neocortical expansion. These results support the emerging view that immature or dormant neurons may represent a reservoir of undifferentiated (stem cell-independent) neuronal cells for the widely expanded cortices of mammals endowed with high order cognitive functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。