Recent research in brain structural plasticity has identified "immature" or "dormant" neurons in layer II of the cerebral cortex (cortical immature neurons; cINs), cells that remain in a prolonged state of arrested development but retain the ability to resume maturation and integrate functionally into mature cortical circuits. These immature cells are far more abundant in large-brained mammals, being restricted to paleocortex (piriform cortex) in small-brained rodents and extending in the widely expanded neocortical mantle of species with large gyrencephalic brains. In a previous systematic analysis, using a comparable method for quantification in eight mammalian species, including mice, chimpanzees, and others of diverse phylogenetic backgrounds and neuroanatomical structure, cIN density showed covariation with brain size. Notably, however, members of the order Carnivora (cats and foxes) displayed the highest cIN densities with respect to sheep and chimpanzees, endowed with larger brains. Here we used the same method to characterize and quantify the cINs in the cerebral cortex of dogs (carnivores) and horses (herbivores with a very large brain) to investigate the position of these two species in the phylogenetic variation. Our results further strengthen the finding of covariance between cIN density and increasing brain size and confirm a relationship with neocortical expansion. These results support the emerging view that immature or dormant neurons may represent a reservoir of undifferentiated (stem cell-independent) neuronal cells for the widely expanded cortices of mammals endowed with high order cognitive functions.
Phylogenetic variation of layer II cortical immature neurons in dog and horse confirms covariance with brain size and neocortical surface.
狗和马第二层皮质未成熟神经元的系统发育变异证实了与脑容量和新皮质表面积的协变性
阅读:5
作者:Pattaro Alessia, Ghibaudi Marco, Corrente Chiara, Telitsyn Nikita, Graic Jean-Marie, Aresu Luca, Sherwood Chet C, Bonfanti Luca
| 期刊: | Brain Structure & Function | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 7; 230(6):115 |
| doi: | 10.1007/s00429-025-02981-x | 种属: | Horse |
| 研究方向: | 神经科学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
