Hair follicle-resident progenitor cells are a major cellular contributor to heterotopic subcutaneous ossifications in a mouse model of Albright hereditary osteodystrophy.

在 Albright 遗传性骨营养不良小鼠模型中,毛囊驻留祖细胞是异位皮下骨化的主要细胞贡献者

阅读:6
作者:McMullan Patrick, Maye Peter, Root Sierra H, Yang Qingfen, Edie Sarah, Rowe David, Kalajzic Ivo, Germain-Lee Emily L
Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO). AHO is caused by heterozygous inactivation of GNAS, the gene that encodes the α-stimulatory subunit (Gα(s)) of G proteins. Previously, we had shown using our laboratory's AHO mouse model that SCOs develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and mice that Secreted Frizzled Related Protein 2 (SFRP2) expression is upregulated in regions of SCO formation and that elimination of Sfrp2 in male AHO mice exacerbates SCO development. These studies provide key insights into the cellular and molecular mechanisms contributing to SCO development and have implications for potential therapeutic modalities not only for AHO patients but also for patients suffering from HOs with other etiologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。