Subtle physiological patterns within the human organism, such as molecular fluctuations or systemic adaptations, often remain hidden from direct observation due to the inherent variability and noise within biological samples. The liver, a vital organ essential for systemic regulation and toxicological assessment, presents this challenge due to its heightened activity, which can influence enzyme dynamics and metabolic processes. Unlike direct observation, in vitro liver models offer a more precise means of understanding these trends, providing insights into the organ's (patho)physiology, and serving as a platform for toxicity evaluation. However, current liver models lack essential features required to faithfully replicate the liver's microenvironment, resulting in reduced accuracy in toxicity assessments. Furthermore, while researchers emphasize mechanistic insights, such as the molecular processes governing glucose metabolism and cellular energy production, clinicians focus on tangible health outcomes, like blood glucose levels in patients. This disconnect between the objectives and methodologies of basic researchers and clinicians amplifies this gap, hindering effective translational research. Addressing these challenges, a novel liver cell culture system that resembles the in vivo liver microenvironment with clinical instrumentation has been proposed to enhance current liver models, improving their capacity to emulate in vivo conditions. This study introduces a novel liver cell culture system, utilizing a 96-well plate format incorporating hepatic sinusoidal endothelial cells, hepatic stellate cells, Kupffer cells, and hepatocytes to replicate the liver microenvironment. The model integrates clinical instrumentation, specifically a biochemical analyzer to ensure biomarkers closely align with those observed in clinical diagnostics. This design enables researchers to fine-tune conditions that mimic the liver's microanatomy and physiological responses, enhancing its translational potential for toxicity assessments. The approach involves primary cell culture preparation, supernatant analysis through a clinical biochemistry analyzer, and cell viability assessment using the Membrane Potential Cell Viability Assay (MPCVA) method. Additionally, advanced imaging techniques and data analysis tools are incorporated to refine the model's capabilities and ensure greater translatability to clinical applications. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Developing a novel liver cell culture system that resembles the in vivo liver microenvironment Basic Protocol 2: Flow cytometry analysis of cell phases using a permeable DNA dye.
How to Establish a Novel Liver Cell Culture System That Resembles the In Vivo Liver Microenvironment.
如何建立一种类似于体内肝脏微环境的新型肝细胞培养系统
阅读:6
作者:Madorran, Eneko
| 期刊: | Current Protocols | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Jul;5(7):e70172 |
| doi: | 10.1002/cpz1.70172 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
