Porphyromonas gingivalis (Pg) is a keystone bacterium associated with systemic diseases, such as diabetes mellitus and Alzheimer's disease. Outer membrane vesicles (OMVs) released from Pg have been implicated in systemic diseases by delivering Pg virulence factors to host cells in distant organs and inducing cellular dysfunction. Pg OMVs also have the potential to enter distant organs via the bloodstream. However, the effects of Pg OMVs on the vascular function are poorly understood. Here, we showed that Pg OMVs increase vascular permeability by promoting stress fiber formation and lysosome/endosome-mediated vascular endothelial-cadherin (VEc) degradation in human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). F-actin, visualized via fluorescein isothiocyanate-phalloidin, became thicker and longer, leading to the formation of radical stress fibers in response to Pg OMVs in HUVECs and HPMECs. Western blotting and quantitative real-time polymerase chain reaction analyses revealed that Pg OMVs decreased VEc protein levels in a gene-independent manner. Pg OMVs enhanced vesicular VEc accumulation in the cytoplasm around lysosome-associated membrane protein 1-positive structures during pretreatment with the lysosomal inhibitor chloroquine. This suggests that Pg OMVs decrease VEc protein levels by accelerating their internalization and degradation via lysosomes and endosomes. A27632 inhibition of Rho kinases impaired the Pg OMV-induced stress fiber formation and VEc degradation, resulting in the recovery of hyperpermeability. These findings provide new insights into the pathogenesis of systemic diseases that are associated with periodontal diseases.
Porphyromonas gingivalis outer membrane vesicles increase vascular permeability by inducing stress fiber formation and degrading vascular endothelial-cadherin in endothelial cells.
牙龈卟啉单胞菌外膜囊泡通过诱导应力纤维形成和降解内皮细胞中的血管内皮钙粘蛋白来增加血管通透性
阅读:4
作者:Mekata Mana, Yoshida Kaya, Takai Ayu, Hiroshima Yuka, Ikuta Ayu, Seyama Mariko, Yoshida Kayo, Ozaki Kazumi
| 期刊: | FEBS Journal | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Apr;292(7):1696-1709 |
| doi: | 10.1111/febs.17349 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
