Endothelial cells respond to forces generated by laminar blood flow with changes in vasodilation, anticoagulant, fibrinolytic, or anti-inflammatory functions which preserve vessel patency. These responses to flow shear stress are primarily mediated by the modulation of the following transcription factors: Krüppel-like factors 2 and 4 (KLF2 and KLF4). Notably, disturbed flow patterns, which are found in vascular areas predisposed to atherosclerosis, significantly reduce the endothelial expression of KLF2 and KLF4, resulting in changes in the transcriptome that exacerbate inflammation and thrombosis. The endothelial CCM (Cerebral Cavernous Malformation) complex, comprising KRIT1 (Krev1 interaction trapped gene 1), CCM2 (Malcavernin), and CCM3 (Programmed cell death protein 10), suppresses the expression of KLF2 and KLF4. Loss of function of the CCM complex has recently been suggested to protect from coronary atherosclerosis in humans. We thus hypothesized that the silencing of KRIT1, the central scaffold of the CCM complex, can normalize the atherogenic effects of disturbed flow on the human endothelial transcriptome. Bulk RNA sequencing (RNA-seq) was conducted on human umbilical vein endothelial cells (HUVECs) after the expression of KRIT1 was silenced using specific small interfering RNA (siRNA). The endothelial cells were exposed to three different conditions for 24 h, as follows: pulsatile shear stress (laminar flow), oscillatory shear stress (disturbed flow), and static conditions (no flow). We found that silencing the KRIT1 expression in HUVECs restored the expression of the transcription factors KLF2 and KLF4 under oscillatory shear stress. This treatment resulted in a transcriptomic profile similar to that of endothelial cells under pulsatile shear stress. These findings suggest that inhibition of the CCM complex in endothelium plays a vasoprotective role by reactivating a protective gene program to help endothelial cells resist disturbed blood flow. Targeting CCM genes can activate well-known vasoprotective gene programs that enhance endothelial resilience to inflammation, hypoxia, and angiogenesis under disturbed flow conditions, providing a novel pathway for preventing atherothrombosis.
Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome.
抑制 KRIT1 可部分逆转紊乱血流对内皮细胞转录组的影响
阅读:5
作者:Meecham Amelia, McCurdy Sara, Frias-Anaya Eduardo, Li Wenqing, Gallego-Gutierrez Helios, Nguyen Phu, Li Yi-Shuan, Chien Shu, Shyy John Y-J, Ginsberg Mark H, Lopez-Ramirez Miguel Alejandro
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 2; 26(9):4340 |
| doi: | 10.3390/ijms26094340 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
