Extinction-reinstatement paradigms have been used to study reward seeking for both food and drug rewards. The nucleus accumbens is of particular interest in reinstatement due to its ability to energize motivated behavior. Indeed, previous work has demonstrated that suppression of neuronal activity or dopaminergic signaling in the nucleus accumbens reduces reinstatement to food seeking. In this study, we sought to further establish a connection between glutamatergic input, measured by proxy via a genetically encoded calcium indicator, and dopamine (DA) tone, measured simultaneously with a red-shifted DA biosensor. We performed this sensor multiplexing in the nucleus accumbens core in the classic extinction-reinstatement paradigm with food reward. We detected DA transients that changed in magnitude and/or temporally shifted over the course of self-administration training. In our calcium traces we observed a decrease from baseline time-locked to the lever press for food reward, which became more prominent with training. Both patterns were reduced in the first session of extinction with no deflections from baseline detected in either the DA or calcium traces in the last extinction session. When we recorded during reinstatement tests, bootstrapping analysis detected a calcium response when reinstatement was primed by cue or pellet+cue presentation, while a DA response was detected for pellet+cue reinstatement. These data further establish a role for nucleus accumbens core activity and DA in reinstatement of food seeking and represent the first attempt to simultaneously record the two during an extinction-reinstatement task.
Dopamine and calcium dynamics in the nucleus accumbens core during food seeking.
觅食过程中伏隔核核心的多巴胺和钙动态变化
阅读:7
作者:Weber Sophia J, Driscoll Gillian S, Beutler Madelyn M, Kuhn Hayley M, Westlake Jonathan G, Wolf Marina E
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 15 |
| doi: | 10.1101/2025.03.11.642710 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
