Dynamic single-cell metabolomics reveals cell-cell interaction between tumor cells and macrophages.

动态单细胞代谢组学揭示肿瘤细胞与巨噬细胞之间的细胞间相互作用

阅读:7
作者:Zhang Yi, Shi Mingying, Li Mingxuan, Qin Shaojie, Miao Daiyu, Bai Yu
Single-cell metabolomics reveals cell heterogeneity and elucidates intracellular molecular mechanisms. However, general concentration measurement of metabolites can only provide a static delineation of metabolomics, lacking the metabolic activity information of biological pathways. Herein, we develop a universal system for dynamic metabolomics by stable isotope tracing at the single-cell level. This system comprises a high-throughput single-cell data acquisition platform and an untargeted isotope tracing data processing platform, providing an integrated workflow for dynamic metabolomics of single cells. This system enables the global activity profiling and flow analysis of interlaced metabolic networks at the single-cell level and reveals heterogeneous metabolic activities among single cells. The significance of activity profiling is underscored by a 2-deoxyglucose inhibition model, demonstrating delicate metabolic alteration within single cells which cannot reflected by concentration analysis. Significantly, the system combined with a neural network model enables the metabolomic profiling of direct co-cultured tumor cells and macrophages. This reveals intricate cell-cell interaction mechanisms within the tumor microenvironment and firstly identifies versatile polarization subtypes of tumor-associated macrophages based on their metabolic signatures, which is in line with the renewed diversity atlas of macrophages from single-cell RNA-sequencing. The developed system facilitates a comprehensive understanding single-cell metabolomics from both static and dynamic perspectives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。