TMEM16A Antagonism: Therapeutic Potential with Desensitization of β-Agonist Responsiveness in Asthma.

TMEM16A拮抗剂:治疗哮喘β-激动剂反应脱敏的潜力

阅读:7
作者:Wu Amy, Kuforiji Aisha, Zhang Yi, Xu Dingbang, Perez-Zoghbi Jose, Emala Charles, Danielsson Jennifer
The efficacy of β-agonists in asthma is severely limited by β-adrenoceptor desensitization, which results in poorly managed symptoms and refractory bronchoconstriction. Thus, there is a need to identify novel therapeutic pathways and to clarify the relationship between novel therapeutics and functional β-adrenoceptor responsiveness. We have previously demonstrated that acute antagonism of the calcium-activated chloride channel, transmembrane member 16A (TMEM16A), relaxes airway smooth muscle (ASM). We sought to determine the efficacy and role of TMEM16A antagonism in the context of desensitization β-adrenoceptor responsiveness. For these studies, we exposed murine tracheal rings on wire myography and precision-cut lung slices to contractile mediators in the presence or absence of TMEM16A antagonists and β-agonists with or without prior β-adrenoceptor desensitization. Contractile studies were also performed with human tracheal and bronchial ASM. Finally, the ability of TMEM16A antagonism to prevent desensitization of β(2)-adrenoceptor-induced cAMP synthesis was measured in human ASM cells. From these studies, we demonstrate that acute TMEM16A antagonism is effective in relaxing β-agonist-desensitized ASM in central and peripheral murine ASM and human ASM. Furthermore, we demonstrate that chronic pretreatment with TMEM16A antagonists prevents functional desensitization of β-agonist responsiveness in mouse and human upper airways and prevents desensitization of β-agonist-mediated cAMP production in human ASM cells. Taken together, the present study demonstrates a favorable therapeutic profile of TMEM16A antagonism for ASM relaxation despite functional desensitization of β-agonist responsiveness, which may be a novel therapeutic approach in the face of β-adrenoceptor tachyphylaxis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。