Urine-derived renal epithelial cells for deep phenotyping and transcriptomic response to therapy in Fabry disease.

尿源性肾上皮细胞用于法布里病的深度表型分析和转录组治疗反应研究

阅读:8
作者:Sudhindar Praveen Dhondurao, Orr Sarah E, Miller-Hodges Eve, Molinari Elisa, Wood Katrina, Srivastava Shalabh, Miles Colin G, Mabillard Holly R, Sentell Zachary T, Trevisan-Herraz Marco, Arcila-Galvis Juliana E, Sayer John A
Fabry disease is an X-linked lysosomal storage disorder caused by α-galactosidase A deficiency, leading to glycosphingolipid accumulation and progressive organ damage. Renal involvement is a major complication, yet diagnosis often requires an invasive kidney biopsy, and follow-up relies on indirect biomarkers or imaging, which lack specificity. Here, we present human urine-derived renal epithelial cells (hURECs) as a minimally invasive alternative for phenotyping renal Fabry disease and monitoring treatment response. Using hURECs from a newly diagnosed male Fabry disease patient, transmission electron microscopy (TEM) revealed lysosomal inclusions consistent with native kidney biopsy findings. Bulk RNA sequencing (RNA-seq) identified a transcriptomic disease signature, including dysregulated pathways involved in lipid metabolism homeostasis, ion transport, endoplasmic reticulum stress response, and collagen processing. Following systemic treatment of the patient with chaperone therapy, partial amelioration of the hUREC transcriptomic signature was observed during the first few months. However, by nine months, the signature began reverting toward baseline, correlating with continued kidney function decline. This prompted a transition to enzyme replacement therapy, with early evaluations showing transcriptomic stabilization. Our findings demonstrate that hURECs replicate key structural and molecular markers of renal Fabry disease and offer a non-invasive platform for longitudinal assessment of treatment response. TEM of hURECs provides a diagnostic alternative to biopsy, while RNA-seq-based transcriptomic profiling offers a sensitive and dynamic view of molecular changes, including key dysregulated pathways. This dual utility positions hURECs as a novel tool for improving the diagnosis, monitoring, and personalized management of kidney involvement in Fabry disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。