Engineered living materials combine the advantages of biological and synthetic systems by leveraging genetic and metabolic programming to control material-wide properties. Here, we demonstrate that extracellular electron transfer (EET), a microbial respiration process, can serve as a tunable bridge between live cell metabolism and synthetic material properties. In this system, EET flux from Shewanella oneidensis to a copper catalyst controls hydrogel cross-linking via two distinct chemistries to form living synthetic polymer networks. We first demonstrate that synthetic biology-inspired design rules derived from fluorescence parameterization can be applied toward EET-based regulation of polymer network mechanics. We then program transcriptional Boolean logic gates to govern EET gene expression, which enables design of computational polymer networks that mechanically respond to combinations of molecular inputs. Finally, we control fibroblast morphology using EET as a bridge for programmed material properties. Our results demonstrate how rational genetic circuit design can emulate physiological behavior in engineered living materials.
Transcriptional regulation of living materials via extracellular electron transfer.
通过细胞外电子传递对生命物质进行转录调控
阅读:9
作者:Graham Austin J, Partipilo Gina, Dundas Christopher M, Miniel Mahfoud Ismar E, Halwachs Kathleen N, Holwerda Alexis J, Simmons Trevor R, FitzSimons Thomas M, Coleman Sarah M, Rinehart Rebecca, Chiu Darian, Tyndall Avery E, Sajbel Kenneth C, Rosales Adrianne M, Keitz Benjamin K
| 期刊: | Nature Chemical Biology | 影响因子: | 13.700 |
| 时间: | 2024 | 起止号: | 2024 Oct;20(10):1329-1340 |
| doi: | 10.1038/s41589-024-01628-y | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
