Here, we present a protocol for predicting cellular age via computer vision analysis of cellular morphology and aging-related bioactivities from phase contrast microscopy images. We describe the steps for cultivating yeast cells, performing phase contrast microscopy of drug-treated yeast cells, and inducing senescence in human dermal fibroblasts. We detail the process of using the scCamAge Docker container, running the scCamAge model, applying the yeast-trained model to senescent human fibroblasts, and performing transfer learning to adapt scCamAge using human fibroblast data. For complete details on the use and execution of this protocol, please refer to Gautam et al.(1).
Protocol for cellular age prediction in yeast and human single cells using transfer learning.
利用迁移学习预测酵母和人类单细胞细胞年龄的方案
阅读:9
作者:Duari Subhadeep, Gautam Vishakha, Ahuja Gaurav
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2025 | 起止号: | 2025 Aug 11; 6(3):104023 |
| doi: | 10.1016/j.xpro.2025.104023 | 种属: | Human、Yeast |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
