Here, we present a protocol for predicting cellular age via computer vision analysis of cellular morphology and aging-related bioactivities from phase contrast microscopy images. We describe the steps for cultivating yeast cells, performing phase contrast microscopy of drug-treated yeast cells, and inducing senescence in human dermal fibroblasts. We detail the process of using the scCamAge Docker container, running the scCamAge model, applying the yeast-trained model to senescent human fibroblasts, and performing transfer learning to adapt scCamAge using human fibroblast data. For complete details on the use and execution of this protocol, please refer to Gautam et al.(1).
Protocol for cellular age prediction in yeast and human single cells using transfer learning.
利用迁移学习预测酵母和人类单细胞细胞年龄的方案
阅读:15
作者:Duari Subhadeep, Gautam Vishakha, Ahuja Gaurav
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2025 | 起止号: | 2025 Aug 11; 6(3):104023 |
| doi: | 10.1016/j.xpro.2025.104023 | 种属: | Human、Yeast |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
