Human cytomegalovirus (CMV) causes serious developmental disabilities in newborns infected in utero following oral acquisition by the mother. Thus, neutralizing antibodies in maternal saliva have potential to prevent maternal infection and, consequently, fetal transmission and disease. Based on standard cell culture models, CMV entry mediators (and hence neutralizing targets) are cell type-dependent: entry into fibroblasts requires glycoprotein B (gB) and a trimeric complex (TC) of glycoproteins H, L, and O, whereas endothelial and epithelial cell entry additionally requires a pentameric complex (PC) of glycoproteins H and L with UL128, UL130, and UL131A. However, as the mediators of mucosal cell entry and the potential impact of cellular differentiation remained unclear, the present studies utilized mutant viruses, neutralizing antibodies, and soluble TC-receptor to determine the entry mediators required for infection of mucocutaneus cell lines and primary tonsil epithelial cells. Entry into undifferentiated cells was largely PC-dependent, but PC-independent entry could be induced by differentiation. TC-independent entry was also observed and varied by cell line and differentiation. Infection of primary tonsil cells from some donors was entirely TC-independent. In contrast, an antibody to gB or disruption of virion attachment using heparin blocked entry into all cells. These findings indicate that CMV entry into the spectrum of cell types encountered in vivo is likely to be more complex than has been suggested by standard cell culture models and may be influenced by the relative abundance of virion envelope glycoprotein complexes as well as by cell type, tissue of origin, and state of differentiation.
Inhibition of human cytomegalovirus entry into mucosal epithelial cells.
抑制人巨细胞病毒进入黏膜上皮细胞
阅读:5
作者:He Li, Hertel Laura, James Claire D, Morgan Iain M, Klingelhutz Aloysius J, Fu Tong-Ming, Kauvar Lawrence M, McVoy Michael A
| 期刊: | Antiviral Research | 影响因子: | 4.000 |
| 时间: | 2024 | 起止号: | 2024 Oct;230:105971 |
| doi: | 10.1016/j.antiviral.2024.105971 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
