Characterization and modeling of additively manufactured Ti-6Al-4V alloy with modified surfaces for medical applications.

对增材制造的具有改性表面的Ti-6Al-4V合金进行表征和建模,以用于医疗应用

阅读:4
作者:Kök Hüray Ilayda, Andreeva Tonya, Stammkötter Sebastian, Reinholdt Cindy, Akbas Osman, Jahn Anne, Gamon Florian, Fuest Sandra, Teschke Mirko, Schäfer Miriam, Müller Michael, Koch Alexander, Jung Ole, Barbeck Mike, Greuling Andreas, Smeets Ralf, Hermsdorf Jörg, Krastev Rumen, Junker Philipp, Stiesch Meike, Walther Frank
In the field of biomedical implants, additively manufactured titanium alloys, particularly Ti-6Al-4V, hold significant potential due to their biocompatibility and mechanical properties. This study focuses on the characterization and modeling of additively manufactured Ti-6Al-4V alloy for dental and maxillofacial implants, emphasizing fatigue behavior, surface modification, and their combined effects on cyto- and osseocompatibility. Experimental methods, including tensile, compression, and fatigue testing, were applied alongside in silico simulations to assess the long-term mechanical performance of the material. Surface properties were further modified through sandblasting and coating techniques to enhance cell adhesion and proliferation. By using in-vitro methods, the cytocompatibility of the coatings and materials was examined followed by in-vivo tests to determine osseocompatibility. Results demonstrated that appropriate surface roughness and modifications are essential in optimizing osseointegration, while the layer-by-layer additive manufacturing process influenced the fatigue life and stability. These findings contribute to the development of patient-specific implants, optimizing both mechanical integrity and biological integration for enhanced clinical outcomes. This work summarizes the investigations on additively manufactured Ti-6Al-4V alloy of the research unit 5250 "Mechanism-based characterization and modeling of permanent and bioresorbable implants with tailored functionality based on innovative in vivo, in vitro and in silico methods" funded by the Germany Research Foundation (DFG).

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。