Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents

数学建模与优化,以猴面包树木屑为原料轻松合成结构化活性炭 (AC),并结合微波辅助热解去除废水中的铅 (II) 阳离子

阅读:6
作者:Santhana Sellamuthu, Zaira Zaman Chowdhury, Khalisanni Khalid, Shahjalal Mohd Shibly, Md Mahfujur Rahman, Masud Rana, Irfan Anjum Badruddin, H M T Khaleed, Sarfaraz Kamangar, Mohd Rafie Bin Johan, Mohamed Hussein, Ajita Mitra, Abu Nasser Faisal

Abstract

In this research, activated carbon (AC) was synthesized from ligno-cellulosic residues of Adansonia kilima (Baobab) wood chips (AKTW) using two-step semi-carbonization and subsequent pyrolysis using microwave-induced heating (MWP) in the presence of a mild activating agent of K2CO3. The influence of process input variables of microwave power (x1), residence time (y1), and amount of K2CO3 (z1) were analysed to yield superior quality carbon having maximum removal efficiencies (R1) for lead (II) cations from waste effluents, fixed carbon percentages (R2), and carbon yield percentages (R3). Analysis of variance (ANOVA) was used to develop relevant mathematical models, with an appropriate statistical assessment of errors. Level factorial response surface methodology (RSM) relying on the Box-Behnken design (BBD) was implemented for the experimental design. The surface area and porous texture of the samples were determined using Brunauer, Emmett, and Teller (BET) adsorption/desorption curves based on the N2 isotherm. Surface morphological structure was observed using field emission scanning electron microscopic (FESEM) analysis. Thermogravimetric analysis (TGA) was carried out to observe the thermal stability of the sample. Change in the carbon content of the samples was determined using ultimate analysis. X-ray diffraction (XRD) analysis was performed to observe the crystalline and amorphous texture of the samples. The retention of a higher proportion of fixed carbon (80.01%) ensures that the synthesized adsorbent (AKTWAC) will have a greater adsorption capacity while avoiding unwanted catalytic activity for our synthesized final sample.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。