Senescence has been shown to contribute to the progression of aging related diseases including degenerative disc disease (DDD). However, the mechanisms regulating senescence in the intervertebral disc (IVD) and other tissues/diseases remain poorly understood. Recently, in a CRISPRa genome-wide screen, our lab identified a previously uncharacterized zinc finger protein, ZNF865 (BLST), that regulates a wide array of genes related to protein processing, cell senescence and DNA damage repair. Here, we demonstrate that ZNF865 expression is correlated with age and disease state in human patient IVD samples and mouse IVD. Utilizing CRISPR-guided gene modulation, we show that ZNF865 is necessary for healthy cell function and is a critical protein in regulating senescence and DNA damage in intervertebral disc cells, with implications for a wide range of tissues and organs. We also demonstrate that downregulation of ZNF865 induces senescence and upregulation mitigates senescence and DNA damage in human nucleus pulposus (NP) cells. Importantly, upregulation of ZNF865 shifts the chromatin landscape and gene expression profile of human degenerative NP cells towards a healthy cell phenotype. Collectively, our findings establish ZNF865 as a novel modulator of genome stability and senescence and as a potential therapeutic target for mediating senescence/DNA damage in senescence related diseases and disorders.
ZNF865 (BLST) Regulates Human Cell Senescence and DNA Damage.
ZNF865 (BLST) 调控人类细胞衰老和 DNA 损伤
阅读:6
作者:Lewis Christian, Levis Hunter, Holbrook Jonah, Polaski Jacob T, Jacobsen Timothy D, Gullbrand Sarah E, Diekman Brian, Iatridis James C, Gertz Jason, Lawrence Brandon, Bowles Robby D
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 18 |
| doi: | 10.1101/2025.06.13.659603 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
