Surface Presentation of Hyaluronic Acid Modulates Nanoparticle-Cell Association.

透明质酸的表面表达调节纳米颗粒与细胞的结合

阅读:4
作者:Deiss-Yehiely Elad, Brucks Spencer D, Boehnke Natalie, Pickering Andrew J, Kiessling Laura L, Hammond Paula T
Nanoparticle (NP) drug carriers have revolutionized medicine and increased patient quality of life. Clinically approved formulations typically succeed because of reduced off-target toxicity of the cargo. However, increasing carrier accumulation at disease sites through precise targeting remains one of the biggest challenges in the field. Novel multivalent ligand presentations and self-assembled constructs can enhance cell association, but an inability to draw direct comparisons across formulations has hindered progress. Furthermore, how nanoparticle structure influences function often is unclear. In this report, we leverage the well-characterized hyaluronic acid (HA)-CD44 binding pair to investigate how the surface architecture of modified NPs impacts their association with ovarian cancer cells that overexpress CD44. We functionalized anionic liposomes with 5 kDa HA by either covalent conjugation via surface coupling or electrostatic self-assembly using the layer-by-layer (LbL) adsorption method. Comparing these two methods, we observed a consistent enhancement of NP-cell association with the self-assembly LbL technique, particularly with higher molecular weight (≥10 kDa) HA. To further optimize association, we increased the surface-available HA. We synthesized a bottlebrush glycopolymer composed of a polynorbornene backbone and pendant 5 kDa HA and layered this macromolecule onto NPs. Flow cytometry revealed that the LbL HA bottlebrush NP outperformed the LbL linear display of HA. Cellular visualization by deconvolution optical microscopy corroborated results from all three constructs. Using exogenous HA to block NP-CD44 interactions, we found the LbL HA bottlebrush NP had a 4-fold higher binding avidity than the best-performing LbL linear HA NP. We further observed that decreasing the density of HA bottlebrush side chains to 75% had minimal impact on LbL NP stability or cell association, though we did see a reduction in binding avidity with this side-chain-modified NP. Our studies indicate that LbL surfaces are highly effective for multivalent displays, and the mode in which they present a targeting ligand can be optimized for NP cell targeting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。