Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disease, characterized by biallelic variants in the ACADM gene. Interestingly, even with the same genotype, patients often present with very heterogeneous symptoms, ranging from fully asymptomatic to life-threatening hypoketotic hypoglycemia. The mechanisms underlying this heterogeneity remain unclear. Therefore, there is a need for in vitro models of MCADD that recapitulate the clinical phenotype as a tool to study the pathophysiology of the disease. Fibroblasts of control and symptomatic MCADD patients with the c.985A>G (p.K329E) were reprogrammed into induced pluripotent stem cells (iPSCs). iPSCs were then differentiated into hepatic expandable organoids (EHOs), further matured to Mat-EHOs, and functionally characterized. EHOs and Mat-EHOs performed typical hepatic metabolic functions, such as albumin and urea production. The organoids metabolized fatty acids, as confirmed by acyl-carnitine profiling and high-resolution respirometry. MCAD protein was fully ablated in MCADD organoids, in agreement with the instability of the mutated MCAD protein. MCADD organoids accumulated medium-chain acyl-carnitines, with a strongly elevated C8/C10 ratio, characteristic of the biochemical phenotype of the disease. Notably, C2 and C14 acyl-carnitines were found decreased in MCADD Mat-EHOs. Finally, MCADD organoids exhibited differential expression of genes involved in Ï-oxidation, mitochondrial β-oxidation, TCA cycle, and peroxisomal coenzyme A metabolism, particularly upregulation of NUDT7. iPSC-derived organoids of MCADD patients recapitulated the major biochemical phenotype of the disease. Mat-EHOs expressed relevant pathways involved in putative compensatory mechanisms, notably CoA metabolism and the TCA cycle. The upregulation of NUDT7 expression may play a role in preventing excessive accumulation of dicarboxylic acids in MCADD. This patient-specific hepatic organoid system is a promising platform to study the phenotypic heterogeneity between MCADD patients.
iPSC-Derived Liver Organoids as a Tool to Study Medium Chain Acyl-CoA Dehydrogenase Deficiency.
利用 iPSC 衍生的肝脏类器官研究中链酰基辅酶 A 脱氢酶缺乏症
阅读:9
作者:Kiyuna Ligia A, Horcas-Nieto José M, Odendaal Christoff, Langelaar-Makkinje Miriam, Gerding Albert, Broekhuis Mathilde J C, Bonanini Flavio, Singh Madhulika, Kurek Dorota, Harms Amy C, Hankemeier Thomas, Foijer Floris, Derks Terry G J, Bakker Barbara M
| 期刊: | Journal of Inherited Metabolic Disease | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 May;48(3):e70028 |
| doi: | 10.1002/jimd.70028 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
