BACKGROUND: This study aimed to identify glycine analogs conducive to the formation of cell-absorbable nanocomplexes, enhancing collagen synthesis and subsequent osteogenesis in combination with BMP2 for improved bone regeneration. METHODS: Glycine and its derivatives were assessed for their effects on osteogenic differentiation in MC3T3-E1 cells and human bone marrow mesenchymal stem cells (BMSCs) under osteogenic conditions or with BMP2. Osteogenic differentiation was assessed through alkaline phosphatase staining and real-time quantitative polymerase chain reaction (RT-qPCR). Nanocomplex formation was examined via scanning electron microscopy, circular dichroism, and ultraviolet-visible spectroscopy. In vivo osteogenic effects were validated using a mouse calvarial defect model, and bone regeneration was evaluated through micro-computed tomography and histomorphometric analysis. RESULTS: Glycine, glycine methyl ester, and glycinamide significantly enhanced collagen synthesis and ALP activity in conjunction with an osteogenic medium (OSM). GA emerged as the most effective inducer of osteoblast differentiation marker genes. Combining GA with BMP2 synergistically stimulated ALP activity and the expression of osteoblast markers in both cell lines. GA readily formed nanocomplexes, facilitating cellular uptake through strong electrostatic interactions. In an in vivo calvarial defect mouse model, the GA and BMP2 combination demonstrated enhanced bone volume, bone volume/tissue volume ratio, trabecular numbers, and mature bone formation compared to other combinations. CONCLUSION: GA and BMP2 synergistically promoted in vitro osteoblast differentiation and in vivo bone regeneration through nanocomplex formation. This combination holds therapeutic promise for individuals with bone defects, showcasing its potential for clinical intervention.
Glycinamide Facilitates Nanocomplex Formation and Functions Synergistically with Bone Morphogenetic Protein 2 to Promote Osteoblast Differentiation In Vitro and Bone Regeneration in a Mouse Calvarial Defect Model.
甘氨酰胺促进纳米复合物的形成,并与骨形态发生蛋白 2 协同作用,在体外促进成骨细胞分化,并在小鼠颅骨缺损模型中促进骨再生
阅读:4
作者:Nam Sang-Hyeon, Kim Ju Ang, Lim Soomin, Lee Su Jeong, Kim Chun-Ho, Bae Jong-Sup, Boo Yong Chool, Kim Young-Jin, Park Eui Kyun
| 期刊: | Tissue Engineering and Regenerative Medicine | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Oct;21(7):1093-1107 |
| doi: | 10.1007/s13770-024-00657-x | 种属: | Mouse |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
