Genome-Wide Silencer Screening Reveals Key Silencer Modulating Reprogramming Efficiency in Mouse Induced Pluripotent Stem Cells.

全基因组沉默子筛选揭示了调节小鼠诱导多能干细胞重编程效率的关键沉默子

阅读:6
作者:Zhu Xiusheng, Huang Lei, Li Guoli, Deng Biao, Wang Xiaoxiao, Yang Hu, Zhang Yuanyuan, Wen Qiuhan, Wang Chao, Zhang Jingshu, Zhao Yunxiang, Li Kui, Liu Yuwen
The majority of the mouse genome is composed of non-coding regions, which harbor numerous regulatory sequences essential for gene regulation. While extensive research focuses on enhancers that activate gene expression, the role of silencers that repress gene expression remains less explored. In this study, the first genome-wide identification of silencers in the mouse genome is conducted. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (mESCs), 89 596 and 115 165 silencers are identified, respectively. These silencers are ubiquitously distributed across the genome and are predominantly associated with low-expression genes. Additionally, these silencers are mainly cell-specific and function by binding to repressive transcription factors (TFs). Further, these silencers are notably enriched with the histone modification H3K9me3. It is observed that the transformation between dual-function silencers and enhancers is correlated with intracellular transcription factor concentrations, accompanied by changes in epigenetic modifications. In terms of biological effects, we have identified silencers that can enhance the induction efficiency of MEFs and influence the pluripotency of mESCs. Collectively, this work offers the first comprehensive silencer landscape in the mouse genome and provides strong evidence for the role of silencers in the induction of induced pluripotent stem cells (iPSCs).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。