Supplementing sialic acid analogs overcomes radiotherapy resistance in triple-negative breast cancer by exacerbating ER stress.

补充唾液酸类似物可通过加剧内质网应激来克服三阴性乳腺癌的放射治疗耐药性

阅读:5
作者:Yang Muwen, Shi Dongni, Lyu Jianbo, Pan Yibing, Lyv Yiyang, Chen Xiangfu, Ouyang Ying, Liu Yajie, Li Yue, Song Libing
Radiotherapy is a cornerstone treatment for triple-negative breast cancer (TNBC), and its incorporation has significantly delayed tumor recurrence. However, the emergence of radiotherapy resistance remains a major clinical challenge, substantially compromising treatment efficacy. Sialylation play a pivotal role in tumor therapeutic resistance which refers to the covalent linkage of sialic acids at the terminal ends of glycoproteins, a process catalyzed by a family of sialyltransferases. However, the function and mechanisms of sialylation in radiotherapy resistance remain elusive. In this study, upregulation of Galbeta1-4 GlcNAc alpha 2,3 sialyltransferase (ST3GAL4) was observed in association with sialylation in TNBC patients with radiotherapy resistance and predicted poorer survival. ST3GAL4 catalyzed α2,3-sialylation of HSP90B1, then facilitates its retrograde trafficking from the Golgi to ER mediated by SURF4 cargo receptor. ER-localized HSP90B1 accelerates the clearance of radiotherapy-induced misfolded proteins and upregulates the PERK-EIF2α-ATF4 pathway, which further transcriptionally upregulates antioxidant factors, such as SLC1A5, GCLC, and CTNS, to inhibit radiotherapy-induced ROS accumulation, ultimately leading to radiotherapy resistance, and poor clinical outcomes. Most importantly, sialic acid analogs (SAA) 3Fax-NeuAc inhibited the sialylation of HSP90B1 and its transport to the ER, thereby effectively overcomed radiotherapy resistance in TNBC. This study suggests that ST3GAL4 confers radiotherapy resistance through the induction of adaptive ER stress by sialylated HSP90B1, while the application of SAA provides a novel therapeutic option against radioresistance of TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。