Cell competition is often categorized into mechanical competition, during which loser cell elimination is induced by long-range mechanical effects, and biochemical competition, during which loser cell elimination results from direct cell-cell contacts. Before confluence, proliferation of winner cells has often been hypothesized to govern competition. Conversely, elimination of loser cells is thought to induce cell proliferation in its vicinity. However, causality is challenging to establish. To address this, we compute spatiotemporal signatures of competitive interactions using K-function clustering analysis. For this, we acquire long-term time lapses of two examples of mechanical (Scr(KD)) and biochemical (Ras(V12)) competition. We then segment cells, track them, and detect mitoses as well as eliminations. Finally, we perform K-function clustering to highlight spatiotemporal regions in which wild-type cell proliferation is enhanced or repressed around an elimination event. Our analysis reveals striking differences between the two types of competition. In the Scr(KD) competition, elimination seems driven by diffuse proliferation that does not cluster near the immediate elimination site. In contrast, Ras(V12) cell elimination is preceded by clustered proliferation of wild-type cells in the vicinity of the eventual Ras(V12) extrusion. Following loser elimination, an increase in local wild-type cell proliferation is observed in both competitions, although the timing and duration of these responses vary. This study not only sheds light on the diverse mechanisms of cell competition but also underscores the complexity of cellular interactions in tissue dynamics, providing new perspectives on cellular quality control and a new quantitative approach to characterize these interactions.
Spatial and temporal signatures of cell competition revealed by K-function analysis.
K 函数分析揭示细胞竞争的空间和时间特征
阅读:3
作者:Day Nathan J, Michalowska Jasmine, Kelkar Manasi, Vallardi Giulia, Charras Guillaume, Lowe Alan R
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 May 1; 36(5):ar61 |
| doi: | 10.1091/mbc.E24-10-0481 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
