Exploring the mechanism of metabolic cell death-related genes AKR1C2 and MAP1LC3A as biomarkers in Parkinson's disease.

探索代谢细胞死亡相关基因 AKR1C2 和 MAP1LC3A 作为帕金森病生物标志物的机制

阅读:5
作者:Fu Jia, Zhao Jing, Zhao Xue, Mi Na, Zhang Chao, Li Xueying, Wu Lei, Han Lige, Zhang Yali, Yao Lifen
There is a strong relationship between metabolic cell death (MCD) and neurodegenerative diseases. However, the involvement of metabolic cell death (MCD)-related genes (MCDRGs) in Parkinson's disease (PD) pathogenesis remains poorly analyzed. Integrating PD-associated differentially expressed genes (DEGs) from GSE7621 with MCDRGs, we identified key biomarkers through protein-protein interaction networks and machine learning. Diagnostic performance was validated through nomogram analysis. Subsequent analyses included functional enrichment, immune profiling, drug prediction, and single-cell RNA sequencing. AKR1C2 and MAP1LC3A were identified as potential biomarkers. A nomogram with superior diagnostic performance was constructed. Gene set enrichment analysis indicated that both biomarkers were linked to the "Parkinson's disease". Further, immune infiltration revealed that AKR1C2 had the remarkably strongest positive correlation with M2 macrophages. Moreover, benzo[a]pyrene-1,6-dione, mestranol, and paraoxon-methyl might be potential therapeutic agents for PD. Single-cell RNA-seq analysis demonstrated endothelial-specific expression, with MAP1LC3A and AKR1C2 exhibiting distinct temporal regulation during differentiation. AKR1C2 and MAP1LC3A were identified as potential biomarkers associated with MCD in PD. These results offer fresh concepts for PD prevention and diagnosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。