Effects of interleukin-15 on neuronal differentiation of neural stem cells

白细胞介素-15对神经干细胞向神经元分化的影响

阅读:6
作者:Yuahn-Sieh Huang, Shin-Nan Cheng, Sheau-Huei Chueh, Yung-Lin Tsai, Nien-Hsien Liou, Yaw-Wen Guo, Mei-Hsiu Liao, Lie-Hang Shen, Chia-Chieh Chen, Jiang-Chuan Liu, Kuo-Hsing Ma

Abstract

Interleukin-15 (IL-15) signaling has pleiotropic actions in many cell types during development and has been best studied in cells of immune system lineage, where IL-15 stimulates proliferation of cytotoxic T cells and induces maturation of natural killer cells. A few reports have indicated that IL-15 and the IL-15 receptor are expressed in central nervous system tissues and neuronal cell lines. Because this aspect of IL-15 action is poorly studied, we used cultured rat neural stem cells (NSCs) to study IL-15 signal transduction and activity. Primary cultures of rat NSCs in culture will form neurospheres and will differentiate into neuron, astrocyte, and oligodendrocyte progenitors under permissive conditions. We found by immunofluorescence that the IL-15Ralpha subunit of the IL-15 receptor was expressed in NSCs and differentiating neurons, but not astrocyte or oligodendrocyte progenitors. We also showed that IL-15 treatment reduced MAP-2 protein levels in neurons and could reduce neurite outgrowth in differentiating neurons but did not affect NSC proliferation, and cell proportions and viability of the corresponding lineage cells. In the presence of a STAT3 inhibitor, Stattic, IL-15 no longer reduced MAP-2 protein levels. IL-15 treatment caused STAT3 phosphorylation. Furthermore, using anti-IL-15Ralpha antibody to block IL-15 signaling completely inhibited IL-15-induced phosphorylation of STAT3 and prevented IL-15 from decreasing neurite outgrowth. In conclusion, IL-15 may influence neural cell differentiation through a signal transduction pathway involving IL-15Ralpha and STAT3. This signal transduction modifies MAP-2 protein levels and, consequently, the differentiation of neurons from NSCs, as evidenced by reduced neurite outgrowth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。