Epstein-Barr virus (EBV) is a carcinogenic γ-herpesvirus that remains latent in more than 95% of adults. The virus can undergo lytic activation when immune function is suppressed or when stimulated by drugs or pathogens. EBV reactivation poses a significant threat to human health and is closely associated with various cancers, such as Burkitt's lymphoma and nasopharyngeal carcinoma. Inhibiting EBV reactivation is a current clinical challenge. Tumour necrosis factor-α (TNF-α), an important cytokine, has different effects on various viruses. It also exerts varying effects on the same virus depending on the type of infected cell. This study aimed to investigate the impact of TNF-α on EBV reactivation and its underlying mechanisms. Our experimental research revealed that TNF-α significantly inhibits EBV reactivation and that this inhibitory effect is mediated primarily through its receptor TNFR1. Furthermore, TNF-α affects the expression of the GPX4 protein and regulates the potential ferroptosis state of cells. Using transmission electron microscopy and other methods, we observed typical characteristics of ferroptosis, such as changes in mitochondrial morphology and Fe2â+âaccumulation. Additionally, we established stable GPX4-knockdown cell lines, which demonstrated the crucial role of GPX4 in the process of TNF-α-mediated inhibition of EBV reactivation. Overall, TNF-α acts on the TNFR1 receptor, thereby affecting the GPX4 protein and the ferroptosis pathway to achieve its inhibitory effect on EBV reactivation. These findings provide new insights into the mechanisms of EBV reactivation and may offer new perspectives for the early treatment of EBV-related diseases.
TNF-α inhibits Epstein Barr virus reactivation through the GPX4 mediated glutathione pathway.
TNF-α通过GPX4介导的谷胱甘肽途径抑制Epstein Barr病毒的再激活
阅读:9
作者:Zhang Youyu, Wu Yilin, Ding Beining, Li Qian, Chen Xuenuo, Liu Huiling, Xu Mingyan, Lan Yinghua, Li Yongguo
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 12; 15(1):16448 |
| doi: | 10.1038/s41598-025-98679-5 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
