BACKGROUND: Sorafenib resistance poses a significant challenge in the management of advanced hepatocellular carcinoma (HCC). Therefore, understanding the mechanisms behind sorafenib resistance is crucial for reversing resistance and enhancing the therapeutic effect of this anti-cancer drug. In this study, the molecular mechanisms underlying the ability of emodin to reverse sorafenib resistance were examined in sorafenib-resistant Huh7 (Huh7SR) cells. METHODS: In this study, we successfully established a Huh7SR cell line that was subsequently divided into four treatment groups: control, sorafenib, emodin, and a combination of sorafenib and emodin. The cell viability, migration, invasion, colony formation capacity, and apoptosis of cells were assessed using the Cell Counting Kit-8 (CCK-8), transwell, colony formation, flow cytometry, and Hoechst staining assays, respectively. Using western blot analysis, we investigated proteins associated with apoptosis, epithelial-mesenchymal transition (EMT), and AKT signaling to explore the molecular mechanisms of emodin-dependent sorafenib resistance reversal. RESULTS: Notably, sorafenib and emodin combination treatment exhibited a synergistic effect, enhancing chemosensitivity and apoptosis while inhibiting proliferation, colony formation, migration, and invasion. Additionally, western blotting showed that emodin significantly enhanced sorafenib's ability to reverse EMT, induce apoptosis, and inhibit AKT signaling in Huh7SR cells. CONCLUSIONS: Our study demonstrated that emodin effectively enhances sorafenib sensitivity, promotes apoptosis, and reverses EMT in Huh7SR cells through inhibition of the Akt signaling pathway. A limitation of this study is the exclusive use of a single cell line. Overall, emodin can enhance sorafenib's efficacy as an adjuvant therapy in the treatment of HCC.
Emodin reverses sorafenib resistance in hepatocellular carcinoma by inhibiting epithelial-mesenchymal transition via the Akt signaling pathway.
大黄素通过Akt信号通路抑制上皮-间质转化,从而逆转肝细胞癌的索拉非尼耐药性
阅读:9
作者:Wang Qingqing, Zhang Jie
| 期刊: | Translational Cancer Research | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 31; 14(1):286-295 |
| doi: | 10.21037/tcr-24-1260 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
