INTRODUCTION: Osteoarthritis (OA) is a devastating whole-joint disease affecting a large population worldwide with no cure; its mechanism remains poorly defined. Abnormal mechanical stress is the main pathological factor of OA. OBJECTIVES: To investigate the effects of Piezo1 activation on OA development and progression and to explore Piezo1-targeting OA treatment. METHODS: The expression levels of Piezo1 were determined in human OA cartilage and experimental OA mice. Mice with genetic Piezo1 deletion in chondrocytes or intra-articular injection of the Piezo1 activator Yoda1 were utilized to determine the effects on DMM-induced OA progression. Effects of artemisinin (ART), a potent antimalarial drug, on Piezo1 activation, chondrocyte metabolism and OA lesions were determined. RESULTS: Piezo1 expression was elevated in articular chondrocytes in human OA and DMM-induced mouse OA cartilage. Piezo1 deletion in chondrocytes largely attenuates DMM-induced OA-like phenotypes. In contrast, intra-articular injection of Yoda1 aggravates the knee joint OA lesions in mice. PIEZO1 activation increases, while PIEZO1 siRNA knockdown decreases, expression of RUNX2 and catabolic enzymes MMP13 and ADAMTS5 in primary human articular chondrocytes in a PI3K-AKT dependent manner. We have provided strong evidence supporting that ART is a novel and potent inhibitor of Piezo1 activation in primary OA-HACs and all cell lines examined, including human endothelial HUVEC cells, ATDC5 chondrocyte-like cells and MLO-Y4 osteocytes-like cells. Results from in vitro experiments confirmed that ART decreases the Yoda1-induced increases in the levels of OA-related genes and p-PI3K and p-AKT proteins in OA-HACs and alleviates DMM-induced OA lesions in mice. CONCLUSIONS: We establish a critical role of Piezo1 in promoting OA development and progression and define ART as a potential OA treatment.
Piezo1 activation accelerates osteoarthritis progression and the targeted therapy effect of artemisinin.
Piezo1 激活可加速骨关节炎的进展和青蒿素的靶向治疗效果
阅读:4
作者:Gan Donghao, Tao Chu, Jin Xiaowan, Wu Xiaohao, Yan Qinnan, Zhong Yiming, Jia Qingyun, Wu Lisheng, Huo Shaochuan, Qin Lei, Xiao Guozhi
| 期刊: | Journal of Advanced Research | 影响因子: | 13.000 |
| 时间: | 2024 | 起止号: | 2024 Aug;62:105-117 |
| doi: | 10.1016/j.jare.2023.09.040 | 研究方向: | 免疫/内分泌 |
| 疾病类型: | 关节炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
