During phagocytosis, the FcGR-IgG bond is thought to be necessary to promote cell-membrane extension as the zipper mechanism. However, does this zipper mechanism provide a spatial antigen discrimination capability that allows macrophages to selectively phagocytose only antigens, especially for clusters with a mixture of antigens and non-antigens? To elucidate the ability and limitation of the zipper mechanism, we fed a coupled 2 μm IgG-coated and 4.5 μm non-coated polystyrene bead mixtures to macrophages and observed their phagocytosis. Macrophage engulfed the mixed clusters, including the 4.5 μm non-coated polystyrene part, indicating that the non-coated particles can be engulfed even without the zipper mechanism as far as coupled to the opsonized particles. In contrast, when the non-opsonized particle part was held by the microcapillary manipulation assay, macrophages pinched off the non-coated polystyrene particle part and internalized the opsonized particle part only. The results suggest that (1) an IgG-coated surface is needed to anchor phagocytosis by cell-membrane protrusion; however, (2) once the antibody-dependent cell phagocytosis is started, phagocytosis can proceed with the uncoated objects as the followers of the internalizing opsonized particles even without the support of the zipper mechanism. They may also indicate the concern of misleading the immune system to target unexpected objects because of their aggregation with target pathogens and the possibility of new medical applications to capture the non-opsonized target objects by the aggregation with small antigens to activate an immune response.
Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay.
利用微毛细管操作试验分析巨噬细胞对靶抗原和非靶物体的空间辨别极限
阅读:6
作者:Ando Maiha, Horonushi Dan, Yuki Haruka, Kato Shinya, Yoshida Amane, Yasuda Kenji
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2024 | 起止号: | 2024 Nov 18; 15(11):1394 |
| doi: | 10.3390/mi15111394 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
