The mutational drift of SARS-CoV-2 and the appearance of multiple variants, including the latest Omicron variant and its sub-lineages, has significantly reduced (and in some cases abolished) the protective efficacy of Wuhan spike-antigen-based vaccines and therapeutic antibodies. One of the most functionally constrained and thus largely invariable regions of the spike protein is the one involved in the interaction with the ACE2 receptor mediating the cellular entry of SARS-CoV-2. Engineered ACE2, both as a full-length protein or as an engineered polypeptide fragment, has been shown to be capable of preventing the host-cell binding of all viral variants and to be endowed with potent SARS-CoV-2 neutralization activity both in vitro and in vivo. Here, we report on the biochemical and antiviral properties of rationally designed ACE2 N-terminal, three-helix fragments that retain a native-like conformation. One of these fragments, designated as PRP8_3H and produced in recombinant form, bears structure-stabilizing and binding-affinity enhancing mutations in α-helix-I and in both α-helix I and II, respectively. While the native-like, unmodified three α-helices ACE2 fragment proved to be thermally unstable and without any detectable pseudovirion neutralization capacity, PRP8_3H was found to be highly thermostable and capable of binding to the SARS-CoV-2 spike receptor-binding domain with nanomolar affinity and to neutralize both Wuhan and Omicron spike-expressing pseudovirions at (sub)micromolar concentrations. PRP8_3H thus lends itself as a highly promising ACE2 decoy prototype suitable for a variety of formulations and prophylactic applications.
Broad Neutralization Capacity of an Engineered Thermostable Three-Helix Angiotensin-Converting Enzyme 2 Polypeptide Targeting the Receptor-Binding Domain of SARS-CoV-2.
靶向 SARS-CoV-2 受体结合域的工程化耐热三螺旋血管紧张素转化酶 2 多肽的广谱中和能力
阅读:3
作者:Cavazzini Davide, Levati Elisabetta, Germani Saveria, Ta Bao Loc, Monica Lara, Bolchi Angelo, Donofrio Gaetano, Garrapa Valentina, Ottonello Simone, Montanini Barbara
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 16; 25(22):12319 |
| doi: | 10.3390/ijms252212319 | 研究方向: | 心血管 |
| 疾病类型: | 新冠 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
