Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by high recurrence rates and limited treatment options due to the absence of hormone receptors. Despite advancements in breast cancer research, effective therapies for TNBC remain inadequate, highlighting the need to elucidate subtype-specific metabolic vulnerabilities. TNBC cells exhibit a strong dependence on the exogenous amino acids cystine and glutamine, yet the interplay between these metabolic dependencies remains poorly understood. Here, we demonstrate that TNBC cells exhibit sensitivity to individual nutrient deprivation but can survive dual cystine and glutamine deprivation via distinct mechanisms. Exogenous glutamine primarily fuels glutamine anaplerosis, supporting TNBC cell proliferation. Notably, when exogenous glutamine is absent, restricted cystine uptake restores intracellular glutamate levels, fulfilling metabolic demands and sustaining TNBC cell growth. Under cystine deprivation, inhibition of glutaminolysis rescues TNBC cells by mitigating lipid peroxidation and reducing ROS production, whereas supplementation with the TCA cycle intermediates É-ketoglutarate (É-KG) and succinate induces profound cell death in both TNBC and luminal breast cancer cells under glutaminolysis blockade. Collectively, these findings highlight the metabolic interdependence of glutamine and cystine in TNBC, providing mechanistic insights into potential metabolic-targeted and dietary interventions for TNBC therapy.
Metabolic interplay between exogenous cystine and glutamine dependence in triple-negative breast cancer.
外源性胱氨酸与谷氨酰胺依赖性在三阴性乳腺癌中的代谢相互作用
阅读:4
作者:Ge Ziqian, Wallace Martina, Turner Rory, Yin Maureen, Rooney Mary F, Porter Richard K
| 期刊: | Cell Death Discovery | 影响因子: | 7.000 |
| 时间: | 2025 | 起止号: | 2025 Oct 6; 11(1):430 |
| doi: | 10.1038/s41420-025-02714-3 | 研究方向: | 代谢 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
