Maternal immune activation with toll-like receptor 7 agonist during mid-gestation alters juvenile and adult developmental milestones and behavior.

妊娠中期使用 Toll 样受体 7 激动剂激活母体免疫,会改变幼年和成年的发育里程碑和行为

阅读:5
作者:Sheng Julietta A, Tobet Stuart A
Infections during pregnancy are associated with increased risk for adult neuropsychiatric disease, such as major depressive disorder, schizophrenia, and autism spectrum disorder. In mouse models of maternal immune activation (MIA), different toll-like receptors (TLRs) are stimulated to initiate inflammatory responses in mother and fetus. The goal of this study was to determine sex-dependent aspects of MIA using a TLR7/8 agonist, Resiquimod (RQ), on neurodevelopment. RQ was administered to timed-pregnant mice on embryonic day (E) 12.5. At E15, maternal/fetal plasma cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Maternal cytokines interleukin (IL)-6 and IL-10 were higher while tumor necrosis factor (TNF)-α and IL-17 were lower in pregnant dams exposed to RQ. Fetal cytokines (E15) were altered at the same timepoint with fetal plasma IL-6 and IL-17 greater after RQ compared to vehicle, while IL-10 and TNF-α were higher in male fetuses but not female. Other timed-pregnant dams were allowed to give birth. MIA with RQ did not alter the female to male ratio of offspring born per litter. Body weights were reduced significantly in both sexes at birth, and over the next 5 weeks. Offspring from RQ-injected mothers opened their eyes 5 days later than controls. Similarly, female offspring from RQ-injected mothers exhibited pubertal delay based on vaginal opening 2-3 days later than control females. On the behavioral side, juvenile and adult male and female MIA offspring exhibited less social-like behavior in a social interaction test. Anhedonia-like behavior was greater in MIA adult female mice. This study provides support for sex-dependent influences of fetal antecedents for altered brain development and behavioral outputs that could be indicative of increased susceptibility for adult disorders through immune mechanisms. Future studies are needed to determine neural cellular and molecular mechanisms for such programming effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。