Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

低剂量奎宁靶向KCNH6,增强葡萄糖诱导的胰岛素分泌

阅读:13
作者:Xiong Feng-Ran, Zhu Juan-Juan, Zhu Xiao-Rong, Lu Jing, Yang Jin-Kui
Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of adenosine triphosphate (ATP)-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets. We also revealed that low-dose quinine (<20 μM) did not directly provoke Ca2+ spikes or insulin secretion under low-glucose conditions but potentiated Ca2+ influx and insulin secretion induced by high glucose, which cannot be explained by KATP inhibition. KCNH6 (hERG2) is a voltage-dependent K+ (Kv) channel that plays a critical role in the repolarization of pancreatic β cells. Patch clamp experiments showed that quinine inhibited hERG channels at low micromolar concentrations. However, whether quinine can target KCNH6 to potentiate glucose-induced insulin secretion remains unclear. Here, we showed that in vivo administration of low-dose quinine (25 mg/kg) improved glucose tolerance and increased glucose-induced insulin release in wild-type control mice but not in Kcnh6-β-cell-specific knockout (βKO) mice. Consistently, in vitro treatment of primary islet β cells with low-dose quinine (10 μM) prolonged action potential duration and augmented glucose-induced Ca2+ influx in the wild-type control group but not in the Kcnh6-βKO group. Our results demonstrate that KCNH6 plays an important role in low-dose quinine-potentiated insulin secretion and provide new insights into KCNH6-targeted drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。