The overproduction of cells and subsequent production of debris is a universal principle of neurodevelopment. Here, we show an additional feature of the developing nervous system that causes neural debris-promoted by the sacrificial nature of embryonic microglia that irreversibly become phagocytic after clearing other neural debris. Described as long-lived, microglia colonize the embryonic brain and persist into adulthood. Using transgenic zebrafish to investigate the microglia debris during brain construction, we identified that unlike other neural cell types that die in developmental stages after they have expanded, necroptosis-dependent microglial debris is prevalent when microglia are expanding in the zebrafish brain. Time-lapse imaging of microglia demonstrates that this debris is cannibalized by other microglia. To investigate features that promote microglia death and cannibalism, we used time-lapse imaging and fate-mapping strategies to track the lifespan of individual developmental microglia. These approaches revealed that instead of embryonic microglia being long-lived cells that completely digest their phagocytic debris, once most developmental microglia in zebrafish become phagocytic they eventually die, including ones that are cannibalistic. These results establish a paradox-which we tested by increasing neural debris and manipulating phagocytosis-that once most microglia in the embryo become phagocytic, they die, create debris, and then are cannibalized by other microglia, resulting in more phagocytic microglia that are destined to die.
Microglia cannibalism and efferocytosis leads to shorter lifespans of developmental microglia.
小胶质细胞的同类相食和胞吞作用导致发育中小胶质细胞的寿命缩短
阅读:10
作者:Gordon Hannah, Schafer Zachary T, Smith Cody J
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2024 | 起止号: | 2024 Oct 30; 22(10):e3002819 |
| doi: | 10.1371/journal.pbio.3002819 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
