Kaempferol Remodels Liver Monocyte Populations and Treats Hepatic Fibrosis in Mice by Modulating Intestinal Flora and Metabolic Reprogramming.

山奈酚通过调节肠道菌群和代谢重编程重塑肝脏单核细胞群并治疗小鼠肝纤维化

阅读:10
作者:Zhu Zhiqin, Zhu Zhiqi, Shi Zhenyi, Wang Chen, Chen Fengsheng
Changes in gut flora are associated with liver fibrosis. The interactions of host with intestinal flora are still unknown, with little research investigating such interactions with comprehensive multi-omics data. The present work analyzed and integrated large-scale multi-omics transcriptomics, microbiome, metabolome, and single-cell RNA-sequencing datasets from Kaempferol-treated and untreated control groups by advanced bioinformatics methods. This study concludes that kaempferol dose-dependently improved serum markers (like AST, ALT, TBil, Alb, and PT) and suppressed fibrosis markers (including HA, PC III, LN, α-SMA, and Collagen I), while kaempferol also increased body weight. Mechanistically, kaempferol improved the metabolic levels of intestinal flora dysbiosis and associated lipids. This was achieved by increasing the abundance of g__Robinsoniella, g__Erysipelotrichaceae_UCG-003, g__Coriobacteriaceae_UCG-002, and 5-Methylcytidine, all-trans-5,6- Epoxyretinoic acid, LPI (18:0), LPI (20:4), etc. to achieve this. Kaemferol exerts anti-inflammatory and immune-enhancing effects by down-regulating the Th17/IL-17 signaling pathway in PDGF-induced LX2 cells. In addition, kaempferol administration remarkably elevated CD4 + T and CD8 + T cellular proportions, thereby activating immune cells for protecting the body and controlling inflammatory conditions. The combined interaction of multiple data may explain how Kaempferol modulates the intestinal flora thereby remodeling the hepatocyte population and alleviating liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。