OBJECTIVE: Anxiety disorder (AD) is a common mental disorder related to cardiovascular disease morbidity. Oxidative stress plays a crucial role in the anxiety state and can lead to cardiac remodeling. Over-activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in cardiomyocytes and neurons can cause oxidative stress. Additionally, the AMPAR inhibitor-2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX) plays an important role in ameliorating oxidative stress. This study aimed to explore the anti-arrhythmic effects of NBQX in a rat model of anxiety. METHODS: The AD model was induced using empty bottle stimulation. Male Sprague Dawley rats were randomly divided into four groups: control + saline, control + NBQX, AD + saline, and AD + NBQX. Open field test was conducted to measure anxiety-like behavior. Electrophysiological experiments, histological analysis, biochemical detection and molecular biology were performed to verify the effects of NBQX on the amelioration of electrical remodeling and structural remodeling. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor (ML385) was used in vitro to demonstrate the signaling pathway. RESULTS: Oxidative stress levels increased with AMPAR over-activation in AD rats, leading to heightened vulnerability to ventricular fibrillation (VF). NBQX reverses anxiety and VF susceptibility. Our results showed that NBQX activated the Nrf2/heme oxygenase-1 (HO-1) pathway, leading to a decline in oxidative stress levels. Connexin 43 and ion channel expression was upregulated. NBQX treatment attenuated fibrosis and apoptosis. This effect was diminished by ML385 treatment in vitro. CONCLUSION: NBQX can alleviate VF susceptibility in rat models of anxiety by alleviating electrical remodeling, structural remodeling via regulating the Nrf2/HO-1 pathway to some extent.
NBQX mediates ventricular fibrillation susceptibility in rat models of anxiety via the Nrf2/HO-1 pathway.
NBQX 通过 Nrf2/HO-1 通路介导焦虑大鼠模型的心室颤动易感性
阅读:4
作者:Hu Yiqian, Qu Chuan, Zou Ying, Liu Xin, Zhang Cui, Yang Bo
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Sep 3; 10(17):e37358 |
| doi: | 10.1016/j.heliyon.2024.e37358 | 种属: | Rat |
| 研究方向: | 心血管 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
