This study aimed to investigate the protective mechanisms of dexmedetomidine (Dex) and thrombopoietin (TPO) against hypoxia/reoxygenation (H/R)-induced myocardial injury. Human cardiomyocyte AC16 cells were subjected to hypoxic conditions and treated with Dex and TPO. Cellular responses, including proliferation, apoptosis, and autophagy, were assessed. RNA sequencing and bioinformatic analyses were conducted to identify differentially expressed genes, followed by functional pathway enrichment analysis. The results demonstrated that Dex and TPO significantly promoted cell proliferation, reduced apoptosis and autophagy, and inhibited caspase-3 activity and light chain 3B (LC3B) expression. Pathway enrichment analysis revealed the involvement of mitogen-activated protein kinase (MAPK), transforming growth factor beta (TGF-β), and tumor necrosis factor (TNF) signaling pathways. Although both treatments demonstrated overlapping effects, they also exhibited distinct gene regulation mechanisms. These findings suggested that Dex and TPO could mitigate H/R-induced myocardial injury through complex gene regulatory mechanisms, highlighting their potential as therapeutic strategies for myocardial ischemia-reperfusion injury (MIRI).
Bioinformatic Analysis of the Protective Effects of Dexmedetomidine and Thrombopoietin Against Hypoxia/Reoxygenation-Induced Injury in AC16 Cells
生物信息学分析右美托咪定和血小板生成素对AC16细胞缺氧/复氧诱导损伤的保护作用
阅读:4
作者:Cuiyan Xing ,Mingyi Wu ,Xiaoyang Zhou ,Benhang Gong
| 期刊: | Chemical Biology & Drug Design | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Apr;105(4):e70105. |
| doi: | 10.1111/cbdd.70105 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
