Integrative analysis of the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction in idiopathic pulmonary fibrosis via evidence-based medicine, bioinformatics, and experimental verification.

通过循证医学、生物信息学和实验验证,对血府竹郁汤治疗特发性肺纤维化的疗效和药理机制进行综合分析

阅读:4
作者:Zhang Huizhe, Hua Haibing, Liu Jian, Wang Cong, Zhu Chenjing, Xia Qingqing, Jiang Weilong, Cheng Xiangjin, Hu Xiaodong, Zhang Yufeng
OBJECTIVE: We used evidence-based medicine, bioinformatics and experimental verification to comprehensively analyze the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction (XFZYD) in the treatment of idiopathic pulmonary fibrosis (IPF). METHODS: Major databases were retrieved for randomized controlled trials (RCTs) of XFZYD treating IPF to perform meta-analysis. Active ingredients and target genes of XFZYD were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). IPF-related differentially expressed genes (DEGs) were identified from the Gene Expression Omnibus (GEO) database. The RGUI software was utilized for Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The ingredient-target and protein-protein interaction (PPI) networks were achieved through Cytoscape software and the STRING database to identify the key compounds and target proteins. Molecular docking was performed using AutoDockTool and AutoDock Vina software. The effect between key compounds and target proteins was verified in animal experiments. RESULTS: Six RCTs were included for meta-analysis, which uncovered that the total effective rate of clinical efficacy was higher in the experimental group than control group. Then, 156 active ingredients and 254 target genes of XFZYD, and 1,566 IPF-related DEGs were identified. The intersection analysis identified 48 target genes correlating with 130 active ingredients of XFZYD treating IPF. GO functional enrichment, KEGG pathway enrichment, ingredient-target network and PPI network were achieved. Following the identification of key compounds and target proteins, we performed molecular docking. Ultimately, our research focused on the key compound quercetin for experimental validation to assess its interactions with two key target proteins, JUN and PTGS2. CONCLUSION: The effectiveness of XFZYD on IPF has been substantiated through evidence-based medicine. The pharmacological mechanism of XFZYD for IPF treatment involves a complex interplay of various compounds and targets, with quercetin exerting pronounced impacts on JUN and PTGS2 proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。