Arachidonic acid suppresses lung cancer cell growth and modulates lipid metabolism and the ERK/PPARγ signaling pathway.

花生四烯酸抑制肺癌细胞生长,并调节脂质代谢和ERK/PPARγ信号通路

阅读:5
作者:Wang Lin, Wei Lanlan, Chen Xueling, Xiong Jiali
Lung cancer remains the leading cause of cancer-related mortality worldwide, necessitating the development of new treatment strategies. Arachidonic acid (ARA), a polyunsaturated fatty acid, shows promise in cancer therapy due to its potential anti-tumor effects, although its role in lung cancer remains unclear. This study investigated the effects and underlying mechanism of ARA on A549 and NCI-H1299 lung cancer cells. In vitro assays were used to assess cell viability, apoptosis, colony formation, lipid droplet formation, and changes in cellular lipid content. ARA dose-dependently suppressed cell viability, facilitated apoptosis, and suppressed colony formation in both lung cancer cell lines. Network pharmacology analysis was performed to identify potential gene targets and pathways, uncovering 61 overlapping genes between ARA and lung cancer-related targets, with mitogen-activated protein kinase 1 (MAPK1) emerging as a key gene. Enrichment analyses suggested that the effects of ARA might be mediated through lipid metabolism and the extracellular signal-regulated kinase (ERK)/peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway. In both lung cancer cell lines, ARA treatment inhibited lipid droplet formation and decreased the cellular lipids. Immunoblotting further confirmed that ARA treatment significantly increased ERK phosphorylation while reducing PPARγ and fatty acid synthase (FASN) protein levels. In vitro experiments using GW9662, a PPARγ antagonist, confirmed that inhibiting lipid droplet formation impairs lung cancer cell viability and promotes apoptosis. Furthermore, in vivo experiments demonstrated that ARA significantly reduced tumor size and weight in a lung cancer xenograft model, further validating its anti-tumor effects. The potential of ARA as a therapeutic agent for lung cancer might involve lipid metabolism and relevant signaling pathways. A future study exploring the full therapeutic potential of ARA and underlying mechanisms in lung cancer is needed.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。