Full-length transcriptome atlas of gallbladder cancer reveals trastuzumab resistance conferred by ERBB2 alternative splicing.

胆囊癌全长转录组图谱揭示了ERBB2选择性剪接赋予的曲妥珠单抗耐药性

阅读:8
作者:Wang Ziyi, Gao Li, Jia Ziheng, Liu Liguo, Gu Ao, Liu Zhaonan, Zhu Qin, Zuo Yichen, Yang Mingjie, Wang Shijia, Ma Jiyao, Zhang Jingyun, Qiu Shimei, Li Zhizhen, Wang Jinghan, Xiang Dongxi, Liu Fatao, Shao Rong, Li Yanjing, Li Maolan, Wei Wu, Liu Yingbin
Aberrant RNA alternative splicing in cancer generates varied novel isoforms and protein variants that facilitate cancer progression. Here, we employed the advanced long-read full-length transcriptome sequencing on gallbladder normal tissues, tumors, and cell lines to establish a comprehensive full-length gallbladder transcriptomic atlas. It is of note that receptor tyrosine kinases were one of the most dynamic components with highly variable transcript, with Erb-B2 receptor tyrosine kinase 2 (ERBB2) as a prime representative. A novel transcript, designated ERBB2 i14e, was identified for encoding a novel functional protein, and its protein expression was elevated in gallbladder cancer and strongly associated with worse prognosis. With the regulation of splicing factors ESRP1/2, ERBB2 i14e was alternatively spliced from intron 14 and the encoded i14e peptide was proved to facilitate the interaction with ERBB3 and downstream signaling activation of AKT. ERBB2 i14e was inducible and its expression attenuated anti-ERBB2 treatment efficacy in tumor xenografts. Further studies with patient derived xenografts models validated that ERBB2 i14e blockage with antisense oligonucleotide enhanced the tumor sensitivity to trastuzumab and its drug conjugates. Overall, this study provides a gallbladder specific long-read transcriptome profile and discovers a novel mechanism of trastuzumab resistance, thus ultimately devising strategies to improve trastuzumab therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。