Klotho Regulates Club Cell Senescence and Differentiation in Chronic Obstructive Pulmonary Disease.

Klotho 调控慢性阻塞性肺疾病中的肺泡巨噬细胞衰老和分化

阅读:11
作者:Li Min, Chen Bo, Sun Sibo, Wang Kai, Wang Yu, Wu Jianqing
Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation and senescence. Previous studies showed that club cells and club cell secretory proteins (CCSP) have anti-inflammatory roles, which reduced in COPD. Klotho (KL) decreased in human COPD lung tissue. KL-deficient mice showed aging phenotypes, such as obvious emphysema and premature senility at the early stage, which are characteristics of COPD. However, little is known about the relationship between KL, club cells, and COPD. We speculated lack of KL would aggravate club cell senescence, which contributes to COPD inflammation. We collected COPD lung tissue using single-cell RNA sequencing (scRNA-seq), revealing club cells heterogeneity and cellular senescence in COPD. In addition, KL and CCSP expressions were downregulated in cigarette smoke (CS)-induced COPD mice, associated with increasing age-related markers. After KL knockout, more ciliated cells appeared where club cells disappeared. Furthermore, KL deficiency aggravated club cell senescence and CSE-induced pulmonary inflammation. To investigate the specific regulation mechanism, hnRNPA2/B1 was recognised and identified it was the key molecule in KL-regulated club cell senescence, and neddylation of club cell was a crucial factor contributing to hnRNPA2/B1 downregulation. In vitro, SA-β-gal staining suggested the aging phenotype was aggravated in hnRNPA2/B1-silenced groups, and hnRNPA2/B1 over-expressed achieved a rescue result. Thus, KL could regulate club cell senescence and differentiation. When CS stimulates the small airway epithelium, KL deficiency aggravates lung inflammation, club cell senescence and dysfunctional of ciliated cell. Targeting neddylation might be a promising strategy to reverse lung aging and club cell senescence. These results provide a mechanism about COPD-linked lung inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。