Targeted degradation of cell surface proteins through endocytosis triggered by cell-penetrating peptide-small molecule conjugates.

通过细胞穿透肽-小分子缀合物触发的内吞作用靶向降解细胞表面蛋白

阅读:7
作者:He Wanyi, Chen Congli, Zheng Jiwei, Li Yanyan, Shi Huaihuai, Zhou Yimin, Li Meiqing, Gong Ping, Liu Ke, Shao Ximing, Yao Xiaojun, Li Hongchang, Chen Liang, Fang Lijing
Targeted degradation of membrane-associated proteins, which constitute a crucial class of drug targets implicated in diverse disease pathologies, has garnered considerable attention in chemical biology and drug discovery recently. Taking advantage of the endosomal entrapment of cell-penetrating peptides (CPPs) in delivering bioactive macromolecules, we successfully construct a CPP-based platform for specific degradation of cell surface proteins by conjugation of target protein-binding small molecules (SMs) with different CPPs, resulting in the formation of CPP-mediated lysosome-targeting chimeras (CPPTACs). Through the endo-lysosomal pathway, CPPTACs exhibit a remarkable ability to degrade clinically significant plasma membrane proteins, including PD-L1, CAIX, and CB(2)R. In contrast to LYTACs and similar technologies, CPPTACs drive the degradation of targets in a manner independent of specific lysosome-shuttling receptors, thus providing a widely applicable strategy for plasma membrane protein degradation, regardless of the cell types. Additionally, simpler structural design and broader therapeutic window for CPPTACs are expected since CPPs-mediated endocytosis and lysosomal degradation do not necessitate the three-component binding model typically required by other heterobifunctional degraders. Overall, consisting of small molecules and biocompatible cell-penetrating peptides, CPPTACs developed in this study represent a simple, adaptable, and effective approach for selectively degrading cell surface proteins in various cellular contexts with potential for application in both biological research and therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。