Auxin-salicylic acid seesaw regulates the age-dependent balance between plant growth and herbivore defense.

生长素-水杨酸平衡调节植物生长和食草动物防御之间随年龄变化的平衡

阅读:9
作者:Han Wen-Hao, Zhang Feng-Bin, Ji Shun-Xia, Liang Kai-Lu, Wang Jun-Xia, Fan Xiao-Ping, Liu Shu-Sheng, Wang Xiao-Wei
According to the plant vigor hypothesis, younger, more vigorous plants tend to be more susceptible to herbivores compared to older, mature plants, yet the molecular mechanisms underlying this dynamic remain elusive. Here, we uncover a hormonal cross-talk framework that orchestrates the age-related balance between plant growth and herbivore defense. We demonstrate that the accumulation of salicylic acid (SA), synthesized by Nicotiana benthamiana phenylalanine ammonia-lyase 6 (NbPAL6), dictates insect resistance in adult plants. NbPAL6 expression is driven by the key transcription factor, NbMYB42, which is regulated by two interacting auxin response factors, NbARF18La/b. In juvenile plants, higher auxin levels activate NbmiR160c, a microRNA that simultaneously silences NbARF18La/b, subsequently reducing NbMYB42 expression, lowering SA accumulation, and thus weakening herbivore defense. Excessive SA in juvenile plants enhances defense but antagonizes auxin signaling, impairing early growth. Our findings suggest a seesaw-like model that balances growth and defense depending on the plant's developmental stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。