Despite remarkable progress in designing RNA delivery systems, endosomal escape remains a recognized challenge for efficient RNA delivery. In this study, we develop a robust mRNA delivery platform termed endosomolytic chloroquine-like optimized lipid nanoparticles (ecoLNPs) for versatile mRNA delivery in vitro and in vivo via integrating the signature scaffold extracted from endosomolytic chloroquine into ionizable lipids. RNase-resistant ecoLNPs are capable of delivering a broad variety of mRNA payloads to diverse cell types, even hard-to-transfect 3D cells, with an efficiency of up to 18.9-fold higher than that of commercial transfection reagents. The pH-responsive endosomolytic activity of ecoLNPs can be largely attributed to the proton sponge effect and saposin B-promoted membrane disruption. In vivo, ecoLNPs enable potent local and systemic mRNA delivery and exhibit comparable potency to the clinically approved mRNA vaccine carrier, but strong tropism for lymph nodes following intramuscular injection. Furthermore, ecoLNPs are able to retain in vivo delivery potency for at least one week under non-frozen conditions and induce efficient genome editing in transgenic mice. Overall, the structure-guided integration strategy provides a pathway for de novo design of endosomolytic mRNA delivery systems.
Structure-guided design of endosomolytic chloroquine-like lipid nanoparticles for mRNA delivery and genome editing.
结构导向设计内溶细胞氯喹样脂质纳米颗粒用于 mRNA 递送和基因组编辑
阅读:7
作者:Liu Zhen, Wu Jiacai, Wang Ning, Lin Yongqi, Song Ruiteng, Zhang Min, Li Bin
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 7; 16(1):4241 |
| doi: | 10.1038/s41467-025-59501-y | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
