Integrative Analysis of Cuproptosis-Related Mitochondrial Depolarisation Genes for Prognostic Prediction in Non-Small Cell Lung Cancer.

整合分析与铜凋亡相关的线粒体去极化基因在非小细胞肺癌预后预测中的作用

阅读:11
作者:Lyu Guoqing, Dai Lihua, Deng Xin, Liu Xiankai, Guo Yan, Zhang Yuan, Wang Xiufeng, Huang Yan, Wu Sun, Guo Jin-Cheng, Liu Yanting
In this research, we conducted an in-depth analysis of differentially expressed genes associated with mitochondrial depolarisation in non-small cell lung cancer (NSCLC) using single-cell sequencing. By combining our findings with cuproptosis-related genes, we identified 10 significant risk genes: DCN, PTHLH, CRYAB, HMGCS1, DSG3, ZFP36L2, SCAND1, NUDT4, NDUFA4L2 and RPL36A, using univariate Cox regression analysis and machine learning methods. These genes form the core of our prognosis risk prediction model, which demonstrated high specificity and accuracy in predicting patient outcomes, as evidenced by ROC curve analysis. Kaplan-Meier curves further confirmed that patients in the low-risk group had significantly better survival rates compared to those in the high-risk group. Our models also provided valuable insights into the tumour microenvironment, immunotherapy sensitivity and chemotherapy response. To facilitate the quantification of the probability of patient survival, we incorporated clinical data into a nomogram. We comprehensively analysed the mutation status and expression patterns of the 10 risk genes using bulk transcriptomic, single-cell and spatial transcriptomic datasets. Drug target predictions highlighted DSG3, PTHLH, ZFP36L2, DCN and NDUFA4L2 as promising therapeutic targets. Notably, RPL36A emerged as a potential tumour marker for NSCLC, with its expression validated in lung cancer cell lines through qPCR. This study has established a predictive models based on mitochondrial depolarisation genes associated with cuproptosis, aiding clinicians in forecasting overall survival and guiding personalised treatment strategies. The identification of novel tumour markers has paved the way for targeted therapies, and therapeutic targets are critical for advancing the treatment of NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。