This study explored the metabolic effects of branched-chain amino acids (BCAAs) on the hepatocytes of spotted seabass (Lateolabrax maculatus) under high-glucose (HG) or high-fat (HF) conditions. Hepatocytes were cultured under five different conditions: control, high glucose (HG), HG + BCAAs (Leu 0.8 mM, Ile 0.4 mM, Val 0.8 mM), high fat (HF), and HF + BCAAs (Leu 0.8 mM, Ile 0.8 mM, Val 0.8 mM). After 72 h of culture, cells and cell supernatants were collected to measure relevant indicators. The results revealed that BCAAs supplementation significantly reduced glycogen and lipid accumulation in hepatocytes exposed to HG or HF conditions (p < 0.05). Additionally, alanine aminotransferase and aspartate aminotransferase activities in the supernatant were significantly decreased, indicating that BCAAs supplementation alleviated hepatocyte damage induced by these conditions. Furthermore, BCAAs addition markedly enhanced antioxidant defense by increasing superoxide dismutase and catalase activities, improving total antioxidant capacity, and reducing malondialdehyde levels. Metabolic enzyme activity analysis revealed that BCAAs significantly increased the activities of citrate synthase (CS), alpha-ketoglutarate dehydrogenase complex (α-KGDHC), succinate dehydrogenase (SDH), phosphoenolpyruvate carboxykinase (PEPCK), and liver pyruvate kinase (LPS), while significantly decreasing fatty acid synthase (FAS) activity. Gene expression analysis further demonstrated that BCAAs supplementation downregulated the expression of lipogenic genes (fas and srebp-1c) and upregulated the expression of lipolytic genes (ppaα and atgl) and glucose metabolism-related genes (g6pd, hk, pfk, pk, fbp, and g6pase). Under HG or HF conditions, hepatocytes exhibited decreased adenosine triphosphate (ATP) content, increased reactive oxygen species (ROS) levels, and reduced mitochondrial membrane potential. These adverse effects were mitigated by BCAAs supplementation. In conclusion, BCAAs supplementation alleviated hepatocyte damage caused by HG or HF conditions, enhanced antioxidant defenses, and protected mitochondrial activity and function by promoting glucose and lipid metabolism.
Application of Branched-Chain Amino Acids Mitigates Mitochondrial Damage to Spotted Seabass (Lateolabrax maculatus) Hepatocytes Cultured in High-Glucose and High-Fat Media.
支链氨基酸的应用可减轻在高葡萄糖和高脂肪培养基中培养的斑点海鲈(Lateolabrax maculatus)肝细胞的线粒体损伤
阅读:5
作者:Ren Huijuan, Ke Yixiong, Li Xueshan, Wang Lin, Song Kai, Guardiola Francisco A, Zhang Chunxiao, Lu Kangle, Rahimnejad Samad
| 期刊: | Animals | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 14; 15(4):560 |
| doi: | 10.3390/ani15040560 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
