Genetic and transcriptome analyses of the effect of genotype-by-environment interactions on Brassica napus seed oil content.

基因型与环境互作对甘蓝型油菜种子含油量的影响的遗传和转录组分析

阅读:4
作者:Han Xu, Wu Xiaowei, Zhang Yawen, Tang Qingqing, Zeng Lingju, Liu Yunhao, Xiang Yuyan, Hou Keqin, Fang Shuai, Lei Weixia, Li Haojie, Tang Shan, Zhao Hu, Peng Yan, Yao Xuan, Guo Tingting, Zhang Yuan-Ming, Guo Liang
The molecular basis underlying crop traits is complex, with gene-by-environment interactions (GEIs) affecting phenotypes. However, quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) and GEIs for seed oil content (SOC) in oil crops are rare. Here, we detected 11 environmentally specific and 10 stable additive QTNs and 11 QEIs for SOC in rapeseed (Brassica napus) using genome-wide association studies. Weighted gene co-expression network analysis identified 8 Environmental-Developmental Gene co-expression Modules for which the eigengenes correlated with SOC and the environment explained a large proportion of the variance in gene expression. By incorporating information from the multi-omics dataset, 17 candidate genes and 11 candidate GEIs for SOC were predicted. We mined 1 GEI candidate, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5), around the environmentally specific QTN qspOC.A02.1 and QEI qeOC.A02.1 detected by climatic indices as covariates. BnaA02.LSH5 was highly expressed in early seed development, and its expression varied significantly across planting sites, with a trend opposite to light-related climatic indices. The BnaA02.lsh5 and BnaC02.lsh5 double mutants had lower SOC, hypocotyl length, photosynthesis, and carbon- and energy-related metabolites compared with wild type. Moreover, BnaA02.LSH5 transcriptionally directly repressed BnaA02.pMDH2 in fatty acid β-oxidation and photosynthetic electron transport. We propose that BnaLSH5 affects seed oil accumulation in response to light intensity. This study provides a basis for creating high-oil germplasm that is adapted to specific environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。