Oxidative stress poses a significant challenge in livestock production, impairing intestinal function, nutrient absorption, and overall animal performance. Uncoupling protein 2 (UCP2) is a mitochondrial regulator known for its protective effects against oxidative damage, but its specific function in porcine intestinal epithelial cells and its regulation by genipin-a natural UCP2 inhibitor with potential therapeutic properties-remains unclear. In this study, we cloned and overexpressed the porcine UCP2 gene in intestinal porcine epithelial cells (IPEC-J2), generating a stable UCP2-overexpressing cell line (IPEC-J2-UCP2). Under hydrogen peroxide-induced oxidative stress, UCP2 overexpression significantly improved cell viability, reduced reactive oxygen species (ROS) levels, and enhanced antioxidant enzyme activities (SOD, GPx, and CAT). Additionally, UCP2 upregulated the anti-apoptotic gene Bcl-2 and downregulated pro-apoptotic genes (Fas, Caspase-3, and Bax), indicating a protective role against oxidative stress-induced apoptosis. We also investigated the regulatory effects of genipin on UCP2. Under non-stress conditions, genipin mildly promoted anti-apoptotic gene expression. However, under oxidative stress, genipin strongly inhibited UCP2 expression, exacerbated ROS accumulation, reduced cell viability, and increased expression of pro-apoptotic markers, particularly Caspase-3 and Bax. These findings reveal that UCP2 plays a critical role in protecting porcine intestinal epithelial cells from oxidative injury and that genipin exerts context-dependent effects on cell fate by modulating UCP2. This study provides a mechanistic basis for targeting UCP2 to manage oxidative stress and improve intestinal health and performance in pigs.
Mechanism Analysis of UCP2 During the Oxidative Stress Injury of Intestinal Porcine Epithelial Cell Line-J2.
UCP2在猪肠道上皮细胞系J2氧化应激损伤中的机制分析
阅读:5
作者:Su Weide, Xu Chuanhui, Jiang Hongping, Song Wenjing, Xiong Pingwen, Chen Jiang, Ai Gaoxiang, Song Qiongli, Zou Zhiheng, Wei Qipeng, Chen Xiaolian
| 期刊: | Animals | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 4; 15(11):1654 |
| doi: | 10.3390/ani15111654 | 种属: | Porcine |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
