Despite the declared end of the COVID-19 pandemic, SARS-CoV-2 continues to evolve, with emerging JN.1-derived subvariants (e.g., KP.2, KP.3) compromising the efficacy of current XBB.1.5-based vaccines. To address this, we developed an mRNA vaccine encoding the full-length spike protein of JN.1, incorporating GSAS and 2P mutations and encapsulated in lipid nanoparticles (LNPs). The JN.1-mRNA vaccine elicited robust humoral and cellular immune responses in mice, including high JN.1-specific IgG titers, cross-neutralizing antibodies, and increased T follicular helper (Tfh) cells, germinal center (GC) B cells, and T cell cytokines. Importantly, immunity persisted for up to six months and induced RBD-specific long-lived plasma cells. We also compared the immune responses induced by homologous and heterologous vaccination regimens, and our results demonstrated that the heterologous regimen-combining JN.1-mRNA with a recombinant protein vaccine (RBD(JN.1)-HR)-induced stronger responses. These findings highlight the JN.1-mRNA vaccine constitutes an effective prophylactic approach against JN.1-related variants, as it induces potent neutralizing antibody responses across all tested lineages. This enhanced immunogenicity is expected to significantly reduce hospitalization rates and mitigate post-COVID complications associated with JN.1 and KP.3 infections. This study emphasizes the need for timely vaccine updates and the adaptability of mRNA vaccines in addressing emerging pathogens, providing a framework for combating future infectious diseases. Collectively, these results offer critical insights for vaccine design and public health strategies in response to emerging SARS-CoV-2 variants.
A promising mRNA vaccine derived from the JN.1 spike protein confers protective immunity against multiple emerged Omicron variants.
一种源自 JN.1 刺突蛋白的有前景的 mRNA 疫苗可对多种新出现的 Omicron 变种提供保护性免疫
阅读:8
作者:Ao Danyi, Peng Dandan, He Cai, Ye Chunjun, Hong Weiqi, Huang Xiya, Lu Yishan, Shi Jie, Zhang Yu, Liu Jian, Wei Xiawei, Wei Yuquan
| 期刊: | Molecular Biomedicine | 影响因子: | 10.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 6(1):13 |
| doi: | 10.1186/s43556-025-00258-7 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
